Data Mining Concepts & Tasks

Duen Horng (Polo) Chau
Georgia Tech

CSE6242 / CX4242
Jan 16, 2014

Partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos
Last Time

Data Cleaning

• Google Refine, Data Wrangler

Data Integration

• Many examples: Google knowledge graph, Facebook Graph Search, Freebase, Feldspar, Kayak, Apple Siri, etc.

• We previewed the “D-Dupe” tool for “entity resolution”
Continuing with

Data Integration
What do we need before we can even integrate datasets/tables/schemas?
What do we need before we can even integrate datasets/tables/schemas?

You need an ID for every unique entity/item/object/thing… Easy?
Entity Resolution
(A hard problem in data integration)

Polo Chau
P. Chau
Duen Horng Chau
Duen Chau
D. Chau
D-Dupe

Interactive Data Deduplication and Integration
TVCG 2008

University of Maryland
Bilgic, Licamele, Getoor, Kang, Shneiderman

http://www.cs.umd.edu/projects/linqs/ddupe/ (skip to 0:55)
Numerous similarity functions

Excellent read: http://infolab.stanford.edu/~ullman/mmds/ch3a.pdf

- Euclidean distance
 Euclidean norm / L2 norm
- Manhattan distance
- Jaccard Similarity
 e.g., overlap of nodes’ #neighbors

\[\text{Jaccard similarity of sets } S \text{ and } T \text{ is } \frac{|S \cap T|}{|S \cup T|} \]

- String edit distance
 e.g., “Polo Chau” vs “Polo Chan”
- Many more…

Figure 3.1: Two sets with Jaccard similarity 3/8
Core components: **Similarity functions**

Determine how two entities are similar.

D-Dupe’s approach:

Attribute similarity + **relational similarity**

\[
sim(e_i, e_j) = (1 - \alpha) \times \text{sim}_A(e_i, e_j) + \alpha \times \text{sim}_R(e_i, e_j),
\]

\[
0 \leq \alpha \leq 1,
\]

Similarity score for a pair of entities
Attribute similarity (a weighted sum)

\[sim_A(e_i, e_j) = \sum_{k=1}^{n} w_k \times sim_{\text{fun}}(e_i \cdot a_k, e_j \cdot a_k), \]

\[-1 \leq w_k \leq 1 \quad \text{and} \quad \sum_{k=1}^{n} |w_k| = 1,\]
Summary for data integration

Opportunities

• enable new services (Siri, padmapper)
• enable new ways to discover info
• improve existing services
• reduce redundancy
• new way to interactive with data
• promote knowledge transfer (e.g., between companies)
Data Mining Concepts & Tasks

Collection

Cleaning

Integration

Analysis

Visualization

Presentation

Dissemination

Each data-driven (business, decision-making) problem is unique, e.g., different goals, constraints.

Good news: many (sub)tasks that underlie these problems are common

Here is an overview of the common tasks.
1. (soft) Classification, Probability Estimation (supervised learning)

Predict which of a (small) set of classes an entity belong to.

Examples: Is this app malicious or benign? Will this customer click on this ad?

More Examples?
- payment transaction -> fraudulent?
- news/emails -> spam?
- tumor -> benign?
- sentiment analysis -> +, -, neutral
- weather -> rain, storm, sunny
- movies genres -> action, etc.
- friends -> close, acquaintance, etc.
- online dating -> will work out or not?
- surveillance system -> suspicious or not
2. Regression ("value estimation")
(supervised learning)

Predict the **numerical value** of some variable for an entity.

Example: how much minutes will this cellphone customer use?

Related to classification, but predict **how much**, instead of **discrete decisions** (e.g., yes, no)

More Examples?
#cancer cells
length of stay of patients in hospital
loan limits to approve for a customer
rent of a house
stock price
online traffic
population
rating of movies
election results (#votes)
rainfall
scores (soccer/football)
3. Similarity Matching

Find similar entities (from a large dataset) based on what we know about them.

Examples?
- online dating
- similar songs/artists
- netflix video recommendations
- amazon products
- flight deals, hotels
- restaurants, tourist attractions
- google: similar keywords
- auto-correction
4. Clustering (unsupervised learning)

Group entities together by their similarity.

Examples?
organisms by environment
material recognition
biking groups (group bikers by interests, hobbies)
group stack overflow posts by tags
meetup atlanta
group locality according crime rate
grouping pixels in images -> differentiate between foreground and background -> object recognition
group plants (bare fruits or not?)
article grouping (academic or otherwise)
google news (world, sports, etc.)
5. Co-occurrence grouping

(Many names: frequent itemset mining, association rule discovery, market-basket analysis)

Find associations between entities based on transactions that involve them (e.g., bread and milk often bought together)
6. Profiling / Pattern Mining / Anomaly Detection

Characterize **typical** behaviors of an entity (person, computer router, etc.) so you can find **trends** and **outliers**.

Examples?
- computer instruction prediction
- removing noise from experiment (data cleaning)
- detect anomalies in network traffic
- moneyball
- weather anomalies (e.g., big storm)
- google sign-in (alert)
- smart security camera
- embezzlement
- trending articles
7. Link Prediction / Recommendation

Predict if two entities should be connected, and how strongly that link should be.

Examples?
two people on Facebook
amazon (things bought together); association-rule mining
netflix: recommend jim carey movie
related questions on quora
top apps on apple store
crime group detection (bad guys on social network)
google search suggestions
8. Data reduction ("dimensionality reduction")

Shrink a large dataset into smaller one, with as little loss of information as possible

When to do it? Examples? Why do it?

Original data is too big -> too hard to process, or take too long

2D -> 1D (many Ds -> few Ds): for visualization, for more efficient algorithms

Graph partitioning - split a large graph into smaller subgraphs
Start thinking about project

• What kind of datasets and problems do you want to solve?
• What techniques do you need?
Survey

Why do you take this class?

* case studies/examples/end-to-end analysis
* applications
** methods to handle/visualize real-world big data
learn the right analytics steps, right way to display data