Big Data Analytics Building Blocks; Simple Data Storage (SQLite)

Duen Horng (Polo) Chau
Georgia Tech

CSE6242 / CX4242
Jan 9, 2014

Partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos
What is **Data** & **Visual** Analytics?
What is Data & Visual Analytics?

No formal definition!
What is **Data & Visual Analytics**?

No formal definition!

Polo’s definition:
the *interdisciplinary* science of combining computation techniques and interactive visualization to transform and model data to aid discovery, decision making, etc.
What are the “ingredients”?
What are the “ingredients”?

Need to worry (a lot) about storage, complex system design, scalability of algorithms, visualization techniques, etc.

Used to be “simpler” before the big data era (why?)
What is **big data**? Why care?

- **Many companies’** businesses are based on big data (Google, Facebook, Amazon, Apple, Symantec, LinkedIn, and many more)
- **Web search**
 - Rank webpages (PageRank algorithm)
 - Predict what you’re going to type
- **Advertisement** (e.g., on Facebook)
 - Infer users’ interest; show relevant ads
 - Infer what you like, based on what your friends like
- **Recommendation systems** (e.g., Netflix, Pandora, Amazon)
- Online education
- Health IT: patient records (EMR)
- Bio and Chemical modeling:
- Finance
- Cybersecurity
Good news! Many big data jobs

- What jobs are hot?
- “Data scientist”
- Emphasize breadth of knowledge
- This course helps you learn some of the skills
Big data analytics process and building blocks
Collection
Cleaning
Integration
Analysis
Visualization
Presentation
Dissemination
Process, not “steps”

- Can skip some
- Can go back (two-way street)

Examples
- Data types inform visualization design
- Data informs choice of algorithms
- Visualization informs data cleaning (dirty data)
- Visualization informs algorithm design (user finds that results don’t make sense)
How big data affects the process?

- The **4V** of big data
 - **Volume**: “billions”, “petabytes” are common
 - **Velocity**: think Twitter, fraud detection, etc.
 - **Variety**: text (webpages), video (e.g., youtube), etc.
 - **Veracity**: uncertainty of data

http://www.ibmbigdatahub.com/infographic/four-vs-big-data
Schedule

Collection
Cleaning
Integration
Analysis
Visualization
Presentation
Dissemination
Two example analytics processes
NetProbe: Fraud Detection in Online Auction

WWW 2007

NetProbe: The Problem

Find **bad sellers** *(fraudsters)* on eBay who don’t deliver their items

Auction fraud is **#3** online crime in 2010

source: www.ic3.gov
NetProbe: Key Ideas

- Fraudsters **fabricate their reputation** by “trading” with their accomplices
- Fake transactions form **near bipartite cores**
- How to detect them?
NetProbe: Key Ideas

Use Belief Propagation

Fraudster

Accomplice

Honest

Darker means more likely
NetProbe: Main Results
THE WALL STREET JOURNAL.
THE WALL STREET JOURNAL.

“Belgian Police”
NetProbe Alpha - Unearth Networks of Suspicious Auction Users

Inspect user alisher for suspicious networks.

alisher
Registration: Aug. 13, 2006
Location: United States

Suspected fraudster -- this user has been behaving much like the other suspects by trading with the similar sets of possible accomplices.
What analytics process does NetProbe go through?

- Collection: Scraping
- Cleaning
- Integration
- Analysis: Design detection algorithm
- Visualization
- Presentation: Paper, talks, lectures
- Dissemination: Not released
Discovr movie app
What analytics process would you go through to build the app?

- Collection: IMDB, Rotten tomatoes, youtube
 - May have duplicate trailers
- Integration
- Analysis: Determine which movies are related
- Visualization
- Presentation
- Dissemination: Mac app, iOS app
Homework 1 (out next Tue)

- Simple “End-to-end” analysis
- Collect data from Rotten Tomatoes (using API)
 - Movies (Actors, directors, related movies, etc.)
 - Store in SQLite database
 - Transform data to movie-movie network
 - Analyze, using SQL queries (e.g., create graph’s degree distribution)
 - Visualize, using Gephi
 - Describe your discoveries
Data Collection, Simple Storage (SQLite) & Cleaning
Data Collection, Simple Storage (SQLite) & Cleaning

• How to get data?
 • Download (where?)
 • API
 • Scrape/Crawl, or from equipment (e.g., sensors)

High effort

Low effort
Data you can just download

- Yahoo Finance (csv)
- StackOverflow (xml)
- Yahoo Music (KDD cup)
- Atlanta crime data (csv)
- Soccer statistics
Data via API

- CrunchBase (database about companies) - JSON
- Twitter
- Last.fm (Pandora has API?)
- Flickr
- Facebook
- Rotten Tomatoes
- iTunes
Data that needs scraping

- Amazon (reviews, product info)
- ESPN
- Google Scholar
- (eBay?)
• **Most popular** embedded database in the world
 • iPhone (iOS), Android, Chrome (browsers), Mac, etc.
• **Self-contained**: one file contains data + schema
• **Serverless**: database right on your computer
• **Zero-configuration**: no need to set up!

http://www.sqlite.org
http://www.sqlite.org/different.html
How does it work?

• `>sqlite3 database.db`

• `sqlite> create table student(ssn integer, name text);`

• `sqlite> .schema`

• `CREATE TABLE student(ssn integer, name text);`

<table>
<thead>
<tr>
<th>ssn</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How does it work?

- `insert into student values(111, "Smith");`
- `insert into student values(222, "Johnson");`
- `insert into student values(333, "Obama");`
- `select * from student;`

<table>
<thead>
<tr>
<th>ssn</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Smith</td>
</tr>
<tr>
<td>222</td>
<td>Johnson</td>
</tr>
<tr>
<td>333</td>
<td>Obama</td>
</tr>
</tbody>
</table>
How does it work?

- create table takes
 (ssn integer, course_id integer, grade integer);
How does it work?

• More than one tables - **joins**

• E.g., create roster for this course

<table>
<thead>
<tr>
<th>ssn</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Smith</td>
</tr>
<tr>
<td>222</td>
<td>Johnson</td>
</tr>
<tr>
<td>333</td>
<td>Obama</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ssn</th>
<th>course_id</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>6242</td>
<td>100</td>
</tr>
<tr>
<td>222</td>
<td>6242</td>
<td>90</td>
</tr>
<tr>
<td>222</td>
<td>4000</td>
<td>80</td>
</tr>
</tbody>
</table>
How does it work?

- `select name from student, takes` where `student.ssn = takes.ssn` and `takes.course_id = 6242`;

<table>
<thead>
<tr>
<th>ssn</th>
<th>name</th>
<th>course_id</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Smith</td>
<td>6242</td>
<td>100</td>
</tr>
<tr>
<td>222</td>
<td>Johnson</td>
<td>6242</td>
<td>90</td>
</tr>
<tr>
<td>333</td>
<td>Obama</td>
<td>4000</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ssn</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Smith</td>
</tr>
<tr>
<td>222</td>
<td>Johnson</td>
</tr>
<tr>
<td>333</td>
<td>Obama</td>
</tr>
</tbody>
</table>
SQL General Form

- `select a1, a2, ... an` from `t1, t2, ... tm` where `predicate`
 [order by]
 [group by ...]
 [having ...]
Find ssn and GPA for each student

- `select ssn, avg(grade) from takes group by ssn;`

<table>
<thead>
<tr>
<th>ssn</th>
<th>course_id</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>6242</td>
<td>100</td>
</tr>
<tr>
<td>222</td>
<td>6242</td>
<td>90</td>
</tr>
<tr>
<td>222</td>
<td>4000</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ssn</th>
<th>avg(grade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>100</td>
</tr>
<tr>
<td>222</td>
<td>85</td>
</tr>
</tbody>
</table>
What if slow?

- Build an **index** to speed things up. SQLite implements **B-tree**.
 Speed improves from $O(N)$ if to do a sequential scan to $O(\log N)$.

- `create index student_ssn_index on student(ssn);`
Homework 1

Write simple scripts to import Rotten Tomatoes data into SQLite, and do some simple queries.

http://developer.rottentomatoes.com/docs/read/json/v10/Movie_Info