Human Computation

Core Research Questions and State of the Art

part I

Edith Law Carnegie Mellon University Human Computation in a nutshell Human Computation in a nutshell

"Some problems are hard, even for the most sophisticated AI algorithms." Human Computation in a nutshell

"Some problems are hard, even for the most sophisticated AI algorithms."

"Let humans solve it ..."

Human Computation you are a human computer Human Computation you are a human computer

Human Computation is an old idea.

Halley Comet 1750's

source: the Yerkes Observatory

Halley Comet 1750's

source: the Yerkes Observatory

Nautical Almanac 1770's

1800

"When Computers were Human" by David A. Grier

Math Tables

Halley Comet 1750's

1800

Babbage Difference Machine 1820's

Telegraph & Weather 1850's

1850

Hollerith Machine 1890's

source: IBM

Math Tables Project 1930's

courtesy: David A. Grier

1950

"When Computers were Human" by David A. Grier

1900

The Web changed everything.

The Present

scale

(von Ahn and Dabbish, 2004)

The Present pervasiveness

Human Computation a growing field

Ist Human Computation Workshop	KDD 2009	
Crowdsourcing for Search Evaluation	SIGIR 2010	
2nd Human Computation Workshop	KDD 2010	
Advancing Computer Vision with Humans in the Loop	CVPR 2010	
Creating Speech and Language Data with Amazon's Mechanical Turk	NAACL 2010	0
Computational Social Science and Wisdom of the Crowds	NIPS 2010	R
Workshop on Ubiquitous Crowdsourincg	Ubicomp 2010	K
Enterprise Crowdsourcing Workshop	ICWE 2010	S
Collaborative Translation Technology, Crowdsourcing and the Translator	AMTA 2010	Н
Crowdsourcing for Search and Data Mining	WSDM 2010	0
Workshop on Crowdsourcing for Information Retrieval	SIGIR 2011	P
Workshop on Social Computing and User Generated Content	EC 2011	S
Workshop on Crowdsourcing and Human Computation	CHI 2011	
3rd Human Computation Workshop	AAAI 2011	
Mechanical Turk for Computer Vision	CVPR 2010	Т
Crowdsourcing for Relevance Evaluation	ECIR 2010	U
Managing Crowdsourced Human Computation	WWW 2011	Т
Crowdsourcing 101: Putting the WSDM of Crowds to Work for You	WSDM 2011	0
Crowdsourcing Applications and Platforms	VLDB 2011	R
Crowdsourcing for Information Retrieval: : Principles, Methods and Appplications	SIGIR 2011	
Quality Crowdsourcing for Human Computer Interaction Research	HCIC 2011	A
Crowdsourcing for Fun and Profit	CrowdConf 2011	L
Human Computation: Core Research Questions and State of the Art	AAAI 2011	S

Human Computation: Core Research Questions and State of the Art

Human Computation multi-disciplinary

Social Science

Artificial Intelligence

Mechanism Design

Tutorial with a purpose

Introduce a framework for human computation with a set of concepts, core research questions, existing work and open problems.

Tutorial with a purpose

Introduce a framework for human computation with a set of concepts, core research questions, existing work and open problems.

ALGORITHM

part I

DESIGN

part 2

2:00-3:30 Edith Law 4:00-5:30 Luis von Ahn

A FRAMEWORK FOR HUMAN COMPUTATION

Concepts • Scope

CONCEPTS

Computation a general definition

The process of mapping input to output.

Computational Problems examples

Human Computation a general definition

Computation that is carried out by a human.

Human Computation problem statement Human Computation problem statement

Given a computational problem, design a solution using human computers and automated computers.

Related Concepts definitions

Related Concepts definitions

COLLECTIVE INTELLIGENCE The shared or group intelligence that emerges from the collaboration and competition of many individuals (bacteria, animals, humans, computer agents).

Related Concepts definitions

COLLECTIVE INTELLIGENCE

The shared or group intelligence that emerges from the collaboration and competition of many individuals (bacteria, animals, humans, computer agents).

SOCIAL COMPUTING

Technology for supporting social behavior and interactions (e.g., blog, email, Instant messaging) or group computation (e.g., collaborative filtering, auctions, prediction markets).
Related Concepts definitions

COLLECTIVE INTELLIGENCE

The shared or group intelligence that emerges from the collaboration and competition of many individuals (bacteria, animals, humans, computer agents).

SOCIAL COMPUTING

Technology for supporting social behavior and interactions (e.g., blog, email, Instant messaging) or group computation (e.g., collaborative filtering, auctions, prediction markets).

CROWDSOURCING Outsourcing tasks through an open call.

Related Concepts boundaries

"Human" In The Loop not bacteria, not ants, not fish.

CO37346 **Base of the second s**

"Human" In The Loop not bacteria, not ants, not fish.

"Human" In The Loop

not bacteria, not ants, not fish.

Conscious Effort

humans are actively computing something, not merely carrier of sensors and computational devices.

"Human" In The Loop

not bacteria, not ants, not fish.

Conscious Effort

humans are actively computing something, not merely carrier of sensors and computational devices.

"Human" In The Loop

not bacteria, not ants, not fish.

Conscious Effort

humans are actively computing something, not merely carrier of sensors and computational devices.

Explicit Control

the outcome of the computation is determined by an algorithm, and not the natural dynamics of the crowd.

Core Research Questions "what", "who", "how"

Given a computational problem, design a solution using human computers and automated computers.

Core Research Questions "what", "who", "how"

"How hard is the problem? Is it efficiently solvable?"

Given a computational problem, design a solution using human computers and automated computers.

"Is the human computation algorithm correct and efficient?" Given a computational problem, design a solution using human computers and automated computers.

Given a computational problem, design a solution using human computers and automated computers.

"How do we aggregate the outputs of many human computers?"

Given a computational problem, design a solution using human computers and automated computers.

"How to make the tradeoff between human versus machine?"

Core Research Questions "what", "who", "how"

"To whom do we route each task, and how?"

Given a computational problem, design a solution using human computers and automated computers.

Core Research Questions "what", "who", "how"

Given a computational problem, design a solution using human computers and automated computers.

"How to design tasks, motivate participation and incentivize truthful outputs?"

"How to meet the needs and wants of the requesters?"

Given a computational problem, design a solution using human computers and automated computers.

Core Research Questions "what", "who", "how"

HUMAN COMPUTATION ALGORITHMS

Definition • **Properties**

DEFINITION

What are algorithms?

```
function quicksort(A)

initialize empty lists L and G

if (length(A) \leq I)

return A

pivot = A.remove(find_pivot(A));

for x in A

if compare(x, pivot)

L.add(x)

else

G.add(x)

return concatenate(quicksort(L), pivot, quicksort(G))

function pivot(A)

return randomIndex(A);
```

```
function compare(x, pivot)
return (x < pivot)
```

Inputs

```
function quicksort(A)
   initialize empty lists L and G
   if (length(A) \leq I)
      return A
   pivot = A.remove(find_pivot(A));
   for x in A
      if compare(x, pivot)
          L.add(x)
      else
          G.add(x)
   return concatenate(quicksort(L), pivot, quicksort(G))
function pivot(A)
   return randomIndex(A);
function compare(x, pivot)
   return (x < pivot)
```

Inputs

function **quicksort**(A) initialize empty lists L and G if (length(A) \leq I) return A pivot = A.remove(find_pivot(A)); for x in A if compare(x, pivot) L.add(x) else G.add(x) return concatenate(quicksort(L), pivot, quicksort(G))

Outputs —

function pivot(A)
 return randomIndex(A);

function **compare**(x, pivot) return (x < pivot)

Inputs

function **quicksort**(A) initialize empty lists L and G if (length(A) \leq I) return A pivot = A.remove(find_pivot(A)); for x in A if compare(x, pivot) L.add(x) else G.add(x) return concatenate(quicksort(L), pivot, quicksort(G))

Outputs —

function pivot(A)
 return randomIndex(A);

function **compare**(x, pivot) return (x < pivot) Precisely — Defined Steps

Inputs

Termination — Condition

Outputs —

function pivot(A)
 return randomIndex(A);

function **compare**(x, pivot) return (x < pivot) Precisely — Defined Steps

Inputs

Termination — Condition

Outputs —

Sufficiently ----Basic Operations ---- function **quicksort**(A) initialize empty lists L and G if (length(A) \leq I) return A pivot = A.remove(find_pivot(A)); for x in A if compare(x, pivot) L.add(x) else G.add(x) return concatenate(quicksort(L), pivot, quicksort(G))

function pivot(A)
 return randomIndex(A);

function **compare**(x, pivot) return (x < pivot) Precisely — Defined Steps

Input, Output, Finiteness, Definiteness, Effectiveness."

Input, Output, Finiteness, Definiteness, Effectiveness."

Input, Output, Finiteness, Definiteness, Effectiveness."

Input, Output, Finiteness, Definiteness, Effectiveness."

Input, Output, Finiteness, Definiteness, Effectiveness."

Input, Output, Finiteness, Definiteness, Effectiveness."

Input, Output, Finiteness, Definiteness, Effectiveness."

Input, Output, Finiteness, Definiteness, Effectiveness."

Input, Output, Finiteness, Definiteness, Effectiveness."

Input, Output, Finiteness, Definiteness, Effectiveness."

Input, Output, Finiteness, Definiteness, Effectiveness."

What are human computation algorithms?

```
function quicksort(A)
```

```
 \begin{array}{l} \mbox{initialize empty lists L and G} \\ \mbox{if (length(A) \leq I)} \\ \mbox{return A} \\ \mbox{pivot = A.remove(find_pivot(A));} \\ \mbox{for x in A} \\ \mbox{if compare(x, pivot)} \\ \mbox{L.add(x)} \\ \mbox{else} \\ \mbox{G.add(x)} \\ \mbox{return concatenate(quicksort(L), pivot, quicksort(G))} \end{array}
```

```
function pivot(A)
  return randomIndex(A);
```

```
function compare(x, pivot)
return (x < pivot)
```

```
function quicksort(A)
```

```
 \begin{array}{l} \mbox{initialize empty lists L and G} \\ \mbox{if (length(A) \leq I)} \\ \mbox{return A} \\ \mbox{pivot = A.remove(find_pivot(A));} \\ \mbox{for x in A} \\ \mbox{if compare(x, pivot)} \\ \mbox{L.add(x)} \\ \mbox{else} \\ \mbox{G.add(x)} \\ \mbox{return concatenate(quicksort(L), pivot, quicksort(G))} \\ \end{array}
```

```
function pivot(A)
```

```
return randomIndex(A);
```

```
function quicksort(A)
```

```
 \begin{array}{l} \mbox{initialize empty lists L and G} \\ \mbox{if (length(A) \leq I)} \\ \mbox{return A} \\ \mbox{pivot = A.remove(find_pivot(A));} \\ \mbox{for x in A} \\ \mbox{if compare(x, pivot)} \\ \mbox{L.add(x)} \\ \mbox{else} \\ \mbox{G.add(x)} \\ \mbox{return concatenate(quicksort(L), pivot, quicksort(G))} \\ \end{array}
```

```
function pivot(A)
  return randomIndex(A);
```

```
function compare(x, pivot)
    return human_compare(x, pivot)
```

```
function quicksort(A)
```

```
 \begin{array}{l} \mbox{initialize empty lists L and G} \\ \mbox{if (length(A) \leq I)} \\ \mbox{return A} \\ \mbox{pivot = A.remove(find_pivot(A));} \\ \mbox{for x in A} \\ \mbox{if compare(x, pivot)} \\ \mbox{L.add(x)} \\ \mbox{else} \\ \mbox{G.add(x)} \\ \mbox{return concatenate(quicksort(L), pivot, quicksort(G))} \end{array}
```

```
function pivot(A)
  return randomIndex(A);
```

```
function compare(x, pivot)
    return human_compare(x, pivot)
```

function **quicksort**(A)

```
initialize empty lists L and G

if (length(A) \leq I)

return A

pivot = A.remove(find_pivot(A));

for x in A

if compare(x, pivot)

L.add(x)

else

G.add(x)

return concatenate(quicksort(L), pivot, quicksort(G))
```

function pivot(A) return randomIndex(A);

```
function compare(x, pivot)
    return human_compare(x, pivot)
```

Mechanical Turk Task

Instructions

You are shown two images. You must select the image that is more indicative of suspicious activities.

Task

Imagine that you are a security guard and you are monitoring two places. Someone informed you that there are suspicious activities in one of the places, but you were not told which one. Which place will you attend to?

Submit

function quicksort(A)

```
initialize empty lists L and G

if (length(A) \leq I)

return A

pivot = A.remove(find_pivot(A));

for x in A

if compare(x, pivot)

L.add(x)

else

G.add(x)

return concatenate(quicksort(L), pivot, quicksort(G))
```

```
function pivot(A)
  return randomIndex(A);
```

```
function compare(x, pivot)
    return human_compare(x, pivot)
```

Mechanical Turk Task

Instructions

You are shown two images. You must select the image that is more indicative of suspicious activities.

Task

Imagine that you are a security guard and you are monitoring two places. Someone informed you that there are suspicious activities in one of the places, but you were not told which one. Which place will you attend to?

Submit

TurKit (Little et al., 2010); Boto (http://code.google.com/p/boto/)

```
function quicksort(A)

initialize empty lists L and G

if (length(A) \leq 1)

return A

pivot = A.remove(find_pivot(A));

for x in A

if compare(x, pivot)

L.add(x)

else

G.add(x)

return concatenate(quicksort(L), pivot, quicksort(G))

function pivot(A)
```

```
return randomIndex(A);
```

```
function compare(x, pivot)
    return human_compare(x, pivot)
```

TurKit (Little et al., 2010); Boto (http://code.google.com/p/boto/)

```
function quicksort(A)
```

```
 \begin{array}{l} \mbox{initialize empty lists L and G} \\ \mbox{if (length(A) \leq I)} \\ \mbox{return A} \\ \mbox{pivot = A.remove(find_pivot(A));} \\ \mbox{for x in A} \\ \mbox{if compare(x, pivot)} \\ \mbox{L.add(x)} \\ \mbox{else} \\ \mbox{G.add(x)} \\ \mbox{return concatenate(quicksort(L), pivot, quicksort(G))} \end{array}
```

```
function pivot(A)
  return randomIndex(A);
```

```
function compare(x, pivot)
    return human_compare(x, pivot)
```

function quicksort(A)

```
 \begin{array}{l} \mbox{initialize empty lists L and G} \\ \mbox{if (length(A) \leq I)} \\ \mbox{return A} \\ \mbox{pivot = A.remove(find_pivot(A));} \\ \mbox{for x in A} \\ \mbox{if compare(x, pivot)} \\ \mbox{L.add(x)} \\ \mbox{else} \\ \mbox{G.add(x)} \\ \mbox{return concatenate(quicksort(L), pivot, quicksort(G))} \\ \end{array}
```

function pivot(A) return randomIndex(A);

```
function compare(x, pivot)
    return human_compare(x, pivot)
```

Games with a Purpose

plan a wedding

Turkomatic (Kulkarni et al., 2011) CrowdForge (Kittur et al., 2011)

PROPERTIES
Is the algorithm correct?

Correctness Theoretical Analysis

What does it mean for a human computation algorithm to be correct?

What guarantees can we give regarding the correctness of a human computation algorithm?

output aggregation after computation

Is the algorithm efficient?

Efficiency Three Measures

Time Complexity How long does it take?

Query Complexity How many queries to the human computers?

> Cost Effectiveness How much does it cost?

Efficiency Time Complexity

Operation Complexity How does the number of operations scale?

Clock Time How much time does it actually take?

Efficiency The need for real-time

vizwiz & quikTurKit (Bigham et al., 2010)

Retainer Model (Bernstein et al., 2011)

Efficiency Query Complexity

I. Repeated Labeling For each input object, how many human computers do we query?

I. Repeated Labeling For each input object, how many human computers do we query?

(Sheng et al., 2009; Kumar and Lease, 2011)

Efficiency Query Complexity

2. Active Learning Which input should we process? What questions should we ask?

"The learner can select the data from which it learns." (Settles, 2011)

"The learner can select the data from which it learns." (Settles, 2011)

a single perfect oracle

label / feature / feature value

"The learner can select the data from which it learns." (Settles, 2011)

a single perfect oracle

label / feature / feature value

"The learner can select the data from which it learns." (Settles, 2011)

multiple imperfect oracles a single perfect oracle

label / feature / feature value

"The learner can select the data from which it learns." (Settles, 2011)

multiple imperfect oracles a single perfect oracle

"The learner can select the data from which it learns." (Settles, 2011)

> multiple imperfect oracles a single perfect oracle

richer, different kinds of questions label / feature / feature value

Active Learning example # 1

(Tamuz et al., 2011)

Active Learning example # 2

(Branson et al., 2010)

Efficiency Cost Effectiveness

Efficiency Cost Effectiveness

How do we price each task? Will the total cost be within budget? What is the total cost in the worst case? Can we minimize cost? What is the cost-benefit tradeoff?

TAKE-HOME

"human computation algorithms \leftrightarrow automated algorithms"

OUTPUT AGGREGATION

Motivation • Simple Outputs • Complex Outputs

Output Aggregation in a nutshell

Outputs can be aggregated by humans or automatically.

MOTIVATION

Outputs generated by human computers can be noisy.

Noise is not only about inaccuracy

Noise is not only about inaccuracy

Score 80 Bonus	Tag a Tune	Timer 1:41
Describe the tune	e Liste	ame different 1 in a rowl
your descriptions male vocal medieval music	ou Correct 60 points	your partner's descriptions Partner Solo
quartet two females		no vocals
•	submit → pass	our partner has chosen.

(Law and von Ahn, 2009)

Noise example from TagATune

CLASSICAL	GRUITAR	FEMALE	RENNAISSANCE	STOMP
GUITAR	PRIMAL	VOCAL	SWING	SKIPPY
PIANO	ACCUSTIC	QUIET	SCI-FI	FOREIGN
VIOLIN	ACTIVE	SITAR	HIPPIE	CHRISTMASSY
ROCK	MEOW	CLASSIC	LULLABY	CLAPPY
SLOW	ононон	SOFT	ANGELIC	CLOUDY
STRINGS	GRADUAL	CELLO	DOWNBEAT	SEASIDE
TECHNO	CLIMATIC	WOMAN	RELAXATION	МАМВО
OPERA	PENSIVE	MALE	GLOOMY	MANDOLIN
DRUMS	HOUSY	SINGING	ROYAL	FOLK
SAME	INSTRUMENTAL	VOCALS	Rүтнміс	NO VIOLINS
FLUTE	CALMISH	SOLO	MUFFLED	MELODY
FAST	FEMALE OPERA	LOUD	RAGTIME	HARMONICA
DIFF	VARIED	CHOIR	TUDOR	ITALIAN
ELECTRONIC	HEALING	VIOLINS	FANTASY	DRAMATIC
AMBIENT	WAVEY	HARP	HISPANIC	BLUEGRASS
BEAT	DRIPPING	BEATS	BEATLES	GENTLE
HARPSICORD	HEBREW	NOT ROCK	SYNCOPATED	SPACESHIP DESCENDING
SYNTH	ANIMALS	WIERD	MID-TEMPO	COOKIE MONSTER VOCAL
INDIAN	REEDS	DANCE	RATTLE	VAMPIRES AT A DINNER PARTY

(Law, Settles and Mitchell, 2010)
CLASSICAL	GRUITAR	FEMALE	RENNAISSANCE	STOMP
GUITAR	PRIMAL	VOCAL	SWING	SKIPPY
PIANO	ACCUSTIC	QUIET	SCI-FI	FOREIGN
VIOLIN	ACTIVE	SITAR	HIPPIE	CHRISTMASSY
ROCK	MEOW	CLASSIC	LULLABY	CLAPPY
SLOW	ононон	SOFT	ANGELIC	CLOUDY
STRINGS	GRADUAL	CELLO	DOWNBEAT	SEASIDE
TECHNO	CLIMATIC	WOMAN	RELAXATION	МАМВО
OPERA	PENSIVE	MALE	GLOOMY	MANDOLIN
DRUMS	HOUSY	SINGING	ROYAL	FOLK
SAME	INSTRUMENTAL	VOCALS	Rүтнміс	NO VIOLINS
FLUTE	CALMISH	SOLO	MUFFLED	MELODY
FAST	FEMALE OPERA	LOUD	RAGTIME	HARMONICA
DIFF	VARIED	CHOIR	TUDOR	ITALIAN
ELECTRONIC	HEALING	VIOLINS	FANTASY	DRAMATIC
AMBIENT	WAVEY	HARP	HISPANIC	BLUEGRASS
BEAT	DRIPPING	BEATS	BEATLES	GENTLE
HARPSICORD	HEBREW	NOT ROCK	SYNCOPATED	SPACESHIP DESCENDING
SYNTH	ANIMALS	WIERD	MID-TEMPO	COOKIE MONSTER VOCAL
INDIAN	REEDS	DANCE	RATTLE	VAMPIRES AT A DINNER PARTY

CLASSICAL	GRUITAR	FEMALE	RENNAISSANCE	STOMP
GUITAR	PRIMAL	VOCAL	SWING	SKIPPY
PIANO	ACCUSTIC	QUIET	SCI-FI	FOREIGN
VIOLIN	ACTIVE	SITAR	HIPPIE	CHRISTMASSY
ROCK	MEOW	CLASSIC	LULLABY	CLAPPY
SLOW	ононон	SOFT	ANGELIC	CLOUDY
STRINGS	GRADUAL	CELLO	DOWNBEAT	SEASIDE
TECHNO	CLIMATIC	WOMAN	RELAXATION	МАМВО
OPERA	PENSIVE	MALE	GLOOMY	MANDOLIN
DRUMS	HOUSY	SINGING	ROYAL	FOLK
SAME	INSTRUMENTAL	VOCALS	Rүтнміс	NO VIOLINS
FLUTE	CALMISH	SOLO	MUFFLED	MELODY
FAST	FEMALE OPERA	LOUD	RAGTIME	HARMONICA
DIFF	VARIED	CHOIR	TUDOR	ITALIAN
ELECTRONIC	HEALING	VIOLINS	FANTASY	DRAMATIC
AMBIENT	WAVEY	HARP	HISPANIC	BLUEGRASS
BEAT	DRIPPING	BEATS	BEATLES	GENTLE
HARPSICORD	HEBREW	NOT ROCK	SYNCOPATED	SPACESHIP DESCENDING
SYNTH	ANIMALS	WIERD	MID-TEMPO	COOKIE MONSTER VOCAL
INDIAN	REEDS	DANCE	RATTLE	VAMPIRES AT A DINNER PARTY

CLASSICAL	GRUITAR	FEMALE	RENNAISSANCE	STOMP
GUITAR	PRIMAL	VOCAL	SWING	SKIPPY
PIANO	ACCUSTIC	QUIET	SCI-FI	FOREIGN
VIOLIN	ACTIVE	SITAR	HIPPIE	CHRISTMASSY
ROCK	MEOW	CLASSIC	LULLABY	CLAPPY
SLOW	ононон	SOFT	ANGELIC	CLOUDY
STRINGS	GRADUAL	CELLO	DOWNBEAT	SEASIDE
TECHNO	CLIMATIC	WOMAN	RELAXATION	МАМВО
OPERA	PENSIVE	MALE	GLOOMY	MANDOLIN
DRUMS	HOUSY	SINGING	ROYAL	FOLK
SAME	INSTRUMENTAL	VOCALS	RYTHMIC	NO VIOLINS
FLUTE	CALMISH	SOLO	MUFFLED	MELODY
FAST	FEMALE OPERA	LOUD	RAGTIME	HARMONICA
DIFF	VARIED	CHOIR	TUDOR	ITALIAN
ELECTRONIC	HEALING	VIOLINS	FANTASY	DRAMATIC
AMBIENT	WAVEY	HARP	HISPANIC	BLUEGRASS
BEAT	DRIPPING	BEATS	BEATLES	GENTLE
HARPSICORD	HEBREW	NOT ROCK	SYNCOPATED	SPACESHIP DESCENDING
SYNTH	ANIMALS	WIERD	MID-TEMPO	COOKIE MONSTER VOCAL
INDIAN	REEDS	DANCE	RATTLE	VAMPIRES AT A DINNER PARTY

CLASSICAL	GRUITAR	FEMALE	RENNAISSANCE	STOMP
GUITAR	PRIMAL	VOCAL	SWING	SKIPPY
PIANO	ACCUSTIC	QUIET	SCI-FI	FOREIGN
VIOLIN	ACTIVE	SITAR	HIPPIE	CHRISTMASSY
ROCK	MEOW	CLASSIC	LULLABY	CLAPPY
SLOW	ононон	SOFT	ANGELIC	CLOUDY
STRINGS	GRADUAL	CELLO	DOWNBEAT	SEASIDE
TECHNO	CLIMATIC	WOMAN	RELAXATION	МАМВО
OPERA	PENSIVE	MALE	GLOOMY	MANDOLIN
DRUMS	HOUSY	SINGING	ROYAL	FOLK
SAME	INSTRUMENTAL	VOCALS	Rүтнміс	NO VIOLINS
FLUTE	CALMISH	SOLO	MUFFLED	MELODY
FAST	FEMALE OPERA	LOUD	RAGTIME	HARMONICA
DIFF	VARIED	CHOIR	TUDOR	ITALIAN
ELECTRONIC	HEALING	VIOLINS	FANTASY	DRAMATIC
AMBIENT	WAVEY	HARP	HISPANIC	BLUEGRASS
BEAT	DRIPPING	BEATS	BEATLES	GENTLE
HARPSICORD	HEBREW	NOT ROCK	SYNCOPATED	SPACESHIP DESCENDING
SYNTH	ANIMALS	WIERD	MID-TEMPO	COOKIE MONSTER VOCAL
INDIAN	REEDS	DANCE	RATTLE	VAMPIRES AT A DINNER PARTY

CLASSICAL	GRUITAR	FEMALE	RENNAISSANCE	STOMP
GUITAR	PRIMAL	VOCAL	SWING	SKIPPY
PIANO	ACCUSTIC	QUIET	SCI-FI	FOREIGN
VIOLIN	ACTIVE	SITAR	HIPPIE	CHRISTMASSY
ROCK	MEOW	CLASSIC	LULLABY	CLAPPY
SLOW	ононон	SOFT	ANGELIC	CLOUDY
STRINGS	GRADUAL	CELLO	DOWNBEAT	SEASIDE
TECHNO	CLIMATIC	WOMAN	RELAXATION	МАМВО
OPERA	PENSIVE	MALE	GLOOMY	MANDOLIN
DRUMS	HOUSY	SINGING	ROYAL	FOLK
SAME	INSTRUMENTAL	VOCALS	Rythmic	NO VIOLINS
FLUTE	CALMISH	SOLO	MUFFLED	MELODY
FAST	FEMALE OPERA	LOUD	RAGTIME	HARMONICA
DIFF	VARIED	CHOIR	TUDOR	ITALIAN
ELECTRONIC	HEALING	VIOLINS	FANTASY	DRAMATIC
AMBIENT	WAVEY	HARP	HISPANIC	BLUEGRASS
BEAT	DRIPPING	BEATS	BEATLES	GENTLE
HARPSICORD	HEBREW	NOT ROCK	SYNCOPATED	SPACESHIP DESCENDING
SYNTH	ANIMALS	WIERD	MID-TEMPO	COOKIE MONSTER VOCAL
INDIAN	REEDS	DANCE	RATTLE	VAMPIRES AT A DINNER PARTY

CLASSICAL	GRUITAR	FEMALE	RENNAISSANCE	STOMP
GUITAR	PRIMAL	VOCAL	SWING	SKIPPY
PIANO	ACCUSTIC	QUIET	SCI-FI	FOREIGN
VIOLIN	ACTIVE	SITAR	HIPPIE	CHRISTMASSY
ROCK	MEOW	CLASSIC	LULLABY	CLAPPY
SLOW	ононон	SOFT	ANGELIC	CLOUDY
STRINGS	GRADUAL	CELLO	DOWNBEAT	SEASIDE
TECHNO	CLIMATIC	WOMAN	RELAXATION	МАМВО
OPERA	PENSIVE	MALE	GLOOMY	MANDOLIN
DRUMS	HOUSY	SINGING	ROYAL	FOLK
SAME	INSTRUMENTAL	VOCALS	Rүтнміс	NO VIOLINS
FLUTE	CALMISH	SOLO	MUFFLED	MELODY
FAST	FEMALE OPERA	LOUD	RAGTIME	HARMONICA
DIFF	VARIED	CHOIR	TUDOR	ITALIAN
ELECTRONIC	HEALING	VIOLINS	FANTASY	DRAMATIC
AMBIENT	WAVEY	HARP	HISPANIC	BLUEGRASS
BEAT	DRIPPING	BEATS	BEATLES	GENTLE
HARPSICORD	HEBREW	NOT ROCK	SYNCOPATED	SPACESHIP DESCENDING
SYNTH	ANIMALS	WIERD	MID-TEMPO	COOKIE MONSTER VOCAL
INDIAN	REEDS	DANCE	RATTLE	VAMPIRES AT A DINNER PARTY

CLASSICAL	GRUITAR
GUITAR	PRIMAL
PIANO	ACCUSTIC
VIOLIN	ACTIVE
ROCK	MEOW
SLOW	ононон
STRINGS	GRADUAL
TECHNO	CLIMATIC
OPERA	PENSIVE
DRUMS	HOUSY
SAME	INSTRUMENTAL
FLUTE	CALMISH
FAST	FEMALE OPERA
DIFF	VARIED
ELECTRONIC	HEALING
AMBIENT	WAVEY
BEAT	DRIPPING
HARPSICORD	HEBREW
SYNTH	ANIMALS
INDIAN	REEDS

FEMALE	RE
VOCAL	S٧
QUIET	sc
SITAR	HI
CLASSIC	LL
SOFT	A٨
CELLO	DC
WOMAN	RE
MALE	GL
SINGING	RC
VOCALS	R
SOLO	ΜV
LOUD	RA
CHOIR	ΤU
VIOLINS	FA
HARP	HI
BEATS	BE
NOT ROCK	SY
WIERD	MI

DANCE

INNAISSANCE	STOMP
VING	SKIPPY
I-FI	FOREIGN
PPIE	CHRISTMASSY
JLLABY	CLAPPY
IGELIC	CLOUDY
WNBEAT	SEASIDE
LAXATION	МАМВО
OOMY	MANDOLIN
DYAL	FOLK
тнміс	NO VIOLINS
JFFLED	MELODY
GTIME	HARMONICA
IDOR	ITALIAN
NTASY	DRAMATIC
SPANIC	BLUEGRASS
ATLES	GENTLE
NCOPATED	SPACESHIP DES
D-TEMPO	COOKIE MONSTE
	VAMPIPES AT A

GENTLE SPACESHIP DESCENDING COOKIE MONSTER VOCAL VAMPIRES AT A DINNER PARTY

(Law, Settles and Mitchell, 2010)

RA

CLASSICAL	GRUITAR	FEMALE	RENNAISSANCE	STOMP
GUITAR	PRIMAL	VOCAL	SWING	SKIPPY
PIANO	ACCUSTIC	QUIET	SCI-FI	FOREIGN
VIOLIN	ACTIVE	SITAR	HIPPIE	CHRISTMASSY
ROCK	MEOW	CLASSIC	LULLABY	CLAPPY
SLOW	ононон	SOFT	ANGELIC	CLOUDY
STRINGS	GRADUAL	CELLO	DOWNBEAT	SEASIDE
TECHNO	CLIMATIC	WOMAN	RELAXATION	МАМВО
OPERA	PENSIVE	MALE	GLOOMY	MANDOLIN
DRUMS	HOUSY	SINGING	ROYAL	FOLK
SAME	INSTRUMENTAL	VOCALS	Rүтнміс	NO VIOLINS
FLUTE	CALMISH	SOLO	MUFFLED	MELODY
FAST	FEMALE OPERA	LOUD	RAGTIME	HARMONICA
DIFF	VARIED	CHOIR	TUDOR	ITALIAN
ELECTRONIC	HEALING	VIOLINS	FANTASY	DRAMATIC
AMBIENT	WAVEY	HARP	HISPANIC	BLUEGRASS
BEAT	DRIPPING	BEATS	BEATLES	GENTLE
HARPSICORD	HEBREW	NOT ROCK	SYNCOPATED	SPACESHIP DESCENDING
SYNTH	ANIMALS	WIERD	MID-TEMPO	COOKIE MONSTER VOCAL
INDIAN	REEDS	DANCE	RATTLE	VAMPIRES AT A DINNER PARTY

The "truth" exists, and through redundancy we can find it.

Truth objective versus cultural

Objective Truth

Cultural Truth

Truth objective versus cultural

Objective Truth

a definitive answer exists beyond human judgments, but hard to reach.

> e.g., cancer or not number of volcanos on Venus location or time of a photo

Cultural Truth

Truth objective versus cultural

Objective Truth

a definitive answer exists beyond human judgments, but hard to reach.

> e.g., cancer or not number of volcanos on Venus location or time of a photo

Cultural Truth

shared beliefs of a group of people, often involving perceptual judgments.

e.g., is this music calm? is this image pornographic? is this disease contagious?

SIMPLE OUTPUTS

Output Aggregation classification

Statistical Measures of Agreement (Artstein and Poesio, 2008)

Statistical Measures of Agreement (Artstein and Poesio, 2008)

The simplest way to aggregate is majority vote.

Statistical Measures of Agreement (Artstein and Poesio, 2008)

The simplest way to aggregate is majority vote.

But how much agreement is really there?

Majority Vote as a graphical model

N classification questions, M workers

Hidden Factors that influence the annotation process

Hidden Factors that influence the annotation process

Task Characteristics

Quality (e.g., blurry pictures) Difficulty (e.g., transcription of non-native speech)

Hidden Factors that influence the annotation process

Task Characteristics

Quality (e.g., blurry pictures) Difficulty (e.g., transcription of non-native speech)

Worker Characteristics

Expertise (e.g., bird identification)Bias (e.g., mother vs college students)Physical Conditions (e.g., fatigue)

Latent Class Model for classification

Dawid and Skeen, 1979 Uebersax et al., 1993 Carpenter, 2008 Whitehill et al., 2009

Ipeirotis et al., 2010 Raykar et al., 2010 Welinder and Perona, 2010 Ipeirotis et al., 2010

Latent Class Model an example

(Welinder et al., 2010)

(Welinder et al., 2010)

Latent Class Model an example

(Welinder et al., 2010)

Other Challenges What if we cannot assume repeated labeling?

COMPLEX OUTPUTS

Complex Outputs and challenges

ranking & clustering

structured outputs

beliefs

Challenge #1:

deciding how to decompose the problem

Ranking Aggregation individual rankings Implies full ranking

Ranking Aggregation individual rankings Important full ranking

paired comparison

Ranking Aggregation individual rankings Important full ranking

Ranking Aggregation individual rankings Important full ranking

Ranking Aggregation an example

(Hacker et al., 2009)

Consensus Clustering individual clusterings in single clusterings

(Topchy et al., 2005; Strehl and Ghosh 2003; Hu and Sung, 2006)

Consensus Clustering individual clusterings is single clustering

(Topchy et al., 2005; Strehl and Ghosh 2003; Hu and Sung, 2006)

Consensus Clustering individual clusterings in single clustering

(Topchy et al., 2005; Strehl and Ghosh 2003; Hu and Sung, 2006)

Consensus Clustering individual clusterings Imple clustering

(Topchy et al., 2005; Strehl and Ghosh 2003; Hu and Sung, 2006)

Consensus Clustering an example

(Parent and Eskenazi, 2010)

Consensus Clustering an example

Do the following definitions of the word aid have the same or different meaning?

• a piece of equipment that helps you to do something.

• something such as a machine or tool that helps someone do something.

LOCALVIEW

(Parent and Eskenazi, 2010)

Consensus Clustering an example

Do the following definitions of the word aid have the same or different meaning?

• a piece of equipment that helps you to do something.

• something such as a machine or tool that helps someone do something.

You have to group the definitions for the word 'code'. There are 2 general meanings.

• to mark a group of things with different colors so that you can tell the difference between them.

- to put a message in code so that it is secret.
- to put a set of numbers, letters, or signs on something to show that it is or give information about it,
- to represent a message in code so that it can only be understand by the person who is meant to receive it.

LOCALVIEW

GLOBAL VIEW

(Parent and Eskenazi, 2010)

Challenge #2:

the correspondence problem

transcription, translation and description

least difficult

transcription, translation and description

least difficult

Transcription ROVER method (Fiscus, 1997) Longest Common Subsequences, Lattice (Evanini et al., 2010)

transcription, translation and description

least difficult

Transcription

ROVER method (Fiscus, 1997) Longest Common Subsequences, Lattice (Evanini et al., 2010)

Translation

BLEU (Pipineni et al., 2002); Consensus Translation (Bangalore et al., 2001; Frederking and Nirenburg, 1994, Matusov et al., 2006, Rosti et al., 2007)

transcription, translation and description

least difficult

Transcription

ROVER method (Fiscus, 1997) Longest Common Subsequences, Lattice (Evanini et al., 2010)

Translation

BLEU (Pipineni et al., 2002); Consensus Translation (Bangalore et al., 2001; Frederking and Nirenburg, 1994, Matusov et al., 2006, Rosti et al., 2007)

Description

Information Fushion (Barzilay, 2003; Barzilay et al., 1999)

most difficult

Challenge #3:

aggregating difficult to articulate outputs

Belief Aggregation with prediction markets

"classification and beyond"

VI

TASK ROUTING

Motivation • Push Methods • Pull Methods

Correctness Three Points of Intervention

MOTIVATION

The most popular task routing method is WHTBT.

The most popular task routing method is WHTBT. (which stands for "Whoever Happens To Be There"). All human computers are not created equal.

Push versus Pull methods of task routing

Push versus Pull methods of task routing

Push

Workers are passive receivers of tasks.

The system takes complete control over who is assigned which task.

Push versus Pull methods of task routing

Push

Workers are passive receivers of tasks.

The system takes complete control over who is assigned which task.

Pull

Workers are active seekers of tasks.

The system supports a set of interfaces that enable workers to look for tasks to assign themselves.

PUSH METHODS

The system takes complete control over who is assigned which task.

Allocation complete knowledge of utility and cost

Allocation complete knowledge of utility and cost

(Shahaf and Horvitz, 2010) Workers have known competencies. Tasks have known demands.

weighted exact set-cover problem

Allocation complete knowledge of utility and cost

(Shahaf and Horvitz, 2010) Workers have known competencies. Tasks have known demands.

weighted exact set-cover problem

(Reddy et al., 2010) Participants have known cost and utility (based on what they can cover).

budgeted maximum coverage problem

Matching complete or partial preferences

man to woman (Gale and Shapley, 1962) medical residents to hospitals (Roth, 1984) students to schools (Teo, 2001) sailors to ships (Liebowitz, 2000)

incomplete information (Gusfield and Irving, 1989; Liebowitz, 2000)

Inference incomplete knowledge of utility and cost

Inference incomplete knowledge of utility and cost

Decision-Theoretic Model

e.g., Donmez et al., 2008 Discovery and Assignment Phase

Inference incomplete knowledge of utility and cost

Decision-Theoretic Model

e.g., Donmez et al., 2008 Discovery and Assignment Phase

Online Learning

e.g., Donmez et al., 2009 Exploration-Exploitation Tradeoff

PULL METHODS

The system merely sets up the environment to allow workers to assign themselves (or each other) tasks.
Search locating tasks

(Chilton et al., 2010)

Visualization locating particular input objects

Visualization locating particular input objects

(Borden, 2006)

Visualization locating particular input objects

source: ablegrape.wordpress.com

(Borden, 2006)

Task Recommendation personalization

Task Recommendation personalization

Content-Based

find similarities between worker profile and task characteristics.

Collaborative Filtering

make use of preference information about tasks (e.g., ratings) to infer similarities between workers.

Hybrid

a mix of content-based and collaborative filtering methods.

Task Recommendation personalization

Content-Based

find similarities between worker profile and task characteristics.

Collaborative Filtering

make use of preference information about tasks (e.g., ratings) to infer similarities between workers.

Hybrid

a mix of content-based and collaborative filtering methods.

ticles you might like to edit, from	SuggestBot
ggestBot predicts that you will enjoy editing som	e of these articles. Have fun!
tubs	Cleanup
Jamie Waylett	Devon Murray
Phineas Nigellus	David Heyman
Christian Coulson	Chris Rankin
Molly Parker	Merge
Alfred Enoch	Scabbers
⁷ Hog's Head	Obliviator
Harry Potter and the Half-Blood Prince (film)	Minor Dark wizards in Harry Potter
Erskine William Gladstone	Add Sources
Dartmoor Preservation Association	Tom Feiton
Unauthorized Chinese Harry Potter books	Filius Flitwick
Hogwarts headache	Ralph Fiennes
Major powers - France	Wikify
Biblical judges	Derren Litten
Manitoba Lotteries Corp.	Shambuka
Madam Hooch	Theatre in education
Adrian Rawlins	Expand
Geraldine Somerville	Strabag
Ottery St Catchpole	Froogle
Marvolo Gaunt	The Road Ahead

SuggestBot picks articles in a number of ways, from comparing articles that need work to other articles you've edited, to choosing articles randomly (ensuring that all articles with cleanup tags get a chance to be cleaned up). It tries to recommend only articles that other Wikipedians have marked as needing work. Your contributions make Wikipedia better -- thanks for helping.

If you have feedback on how to make SuggestBot better, please tell me on SuggestBot's talk page. Thanks from ForteTuba, SuggestBot's caretaker.

P.S. You received these suggestions because your name was listed on the SuggestBot

Peer Routing people's knowledge of each other

Peer Routing people's knowledge of each other

DARPA Red Balloon Challenge

Peer Routing people's knowledge of each other

DARPA Red Balloon Challenge

(Zhang et al., 2011)

"Wisdom of the individuals in the crowd"

CONCLUSION

Conclusion

Summary What have we learned?

Closing What are some opportunities for AI research?

Human Computation Algorithms

- definition
- control, operation and synthesis
- programming
- correctness and efficiency

Bird's Eye View of this tutorial

What

Human Computation Algorithms

- definition
- control, operation and synthesis

How

- programming
- correctness and efficiency

Output Aggregation

- classification
- ranking and clustering
- structured outputs
- beliefs

Who

Bird's Eye View of this tutorial

What

Human Computation Algorithms

- definition
- control, operation and synthesis

How

- programming
- correctness and efficiency

Output Aggregation

- classification
- ranking and clustering
- structured outputs
- beliefs

Task Who

Routing

- push versus pull
- allocation / matching
- inference / online learning

What

Human Computation Algorithms

- definition
- control, operation and synthesis

How

- programming
- correctness and efficiency

Output Aggregation

- classification
- ranking and clustering
- structured outputs
- beliefs

Designing for Human Computers

• who they are

• what are their

wants and needs

The Art of Asking Questions

• task design

• game design

• push versus pull

Task

Routing

- allocation / matching
- inference / online learning

Who

CLOSING

Al as requesters

learning to recognize objects, translate sentences, classifying music by querying human teachers.

Al as requesters

learning to recognize objects, translate sentences, classifying music by querying human teachers.

Al as optimizers

improve the accuracy and efficiency of human computation algorithms.

Al as requesters

learning to recognize objects, translate sentences, classifying music by querying human teachers.

Al as optimizers

improve the accuracy and efficiency of human computation algorithms.

Al as enablers

make human computers better, e.g., by organizing and displaying information to workers.

Al as requesters

learning to recognize objects, translate sentences, classifying music by querying human teachers.

Al as optimizers

improve the accuracy and efficiency of human computation algorithms.

Al as enablers

make human computers better, e.g., by organizing and displaying information to workers.

Al as workers

perform tasks that they are better at than humans.

MORGAN & CLAYPOOL PUBLISHERS
Human Computation
Edith Law Luis von Ahn
Synthesis Lectures on Artificial Intelligence and Machine Learning
Ronald J. Brachman, William Cohen, and Thomas G. Dietterich, Series Editors

a conceptual frameworkan annotated bibliographya place to get ideas for researcha work in progress

free for you! Come pick one up during the break.

Other resources: http://humancomputation.com/book

THANK YOU & CATCH YOU @ COFFEE!