Clustering

Duen Horng (Polo) Chau
Georgia Tech
Clustering in Google Image Search

How would you build this?

Video: http://youtu.be/WosBs0382SE
http://googlesystem.blogspot.com/2011/05/google-image-search-clustering.html
Clustering in Google Search

How would you build this?
Clustering
The most common type of unsupervised learning

High-level idea: group similar things together

“Unsupervised” because clustering model is learned without any labeled examples
(e.g., here are some pictures of dog, group them by their breed)
Applications of Clustering

- google news
- IMDB (movie sites)
- anomaly detection
- detecting population subgroups (community detection)
 - as in healthcare
- Twitter hashtags
 - text-based clustering
- (Age detection)
Clustering techniques you’ve got to know

K-means
Hierarchical Clustering (DBSCAN)
K-means (the “simplest” technique)

Demo: http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

Summary

- We tell K-means the value of k (#clusters we want)
- Randomly initialize the k cluster “means” (“centroids”)
- Assign each item to the the cluster whose mean the item is closest to (so, we need a similarity function)
- Update the new “means” of all k clusters.
- If all items’ assignments do not change, stop.
K-means What’s the catch?

Need to **decide k ourselves.**

- How to find the optimal k?

Only locally optimal (vs global)

- Different initialization gives different clusters
 - How to “fix” this?
 - “Bad” starting points can cause algorithm to converge slowly

- Can work for relatively large dataset
 - Time complexity $O(n \log n)$
Hierarchical clustering

High-level idea: build a tree (hierarchy) of clusters

Agglomerative (bottom-up)

- Start with individual items
- Then iteratively group into larger clusters

Divisive (top-down)

- Start with all items as *one cluster*
- Then iteratively divide into smaller clusters

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletH.html
Ways to calculate distances between two clusters

Single linkage

• minimum of distance between clusters

• similarity of two clusters = similarity of the clusters’ most similar members

Complete linkage

• maximum of distance between clusters

• similarity of two clusters = similarity of the clusters’ most dissimilar members

Average linkage

• distance between cluster centers
Hierarchical clustering for large datasets?

- OK for small datasets (e.g., <10K items)
- Time complexity between $O(n^2)$ to $O(n^3)$ where n is the number of data items
- Not good for millions of items or more
- But great for understanding concept of clustering
Visualizing Clusters

Visualizing Clusters

Visualizing Clusters