CSE6242 /| CX4242: Data and Visual Analytics | Georgia Tech | Fall 2014

Homework 3: Hadoop, Spark, and Pig
Due: Monday, November 3, 2014, 11:59PM EDT

Prepared by Seungyeon Kim, Drew Wei, Brian Minsuk Kahng, Alan Zhang, and Polo Chau

You will try out Hadoop (http://hadoop.apache.org/), Spark (https://spark.apache.org/),

and Pig (https://pig.apache.org/). You will submit a single archive file; detailed submission
instructions are in the last section. We expect you likely need to spend 2 hours on the
environment setup, 6 hours on Task 1, 5 hours on Task 2, and 6 hours on Task 3. Each student
must write his/her own answers. All GT students must observe the honor code.

Setting up Development Environment for Task 1 and Task 2

Installing CDH

Download a preconfigured virtual machine (VM) image from Cloudera (CDH). Please use
5.2.x or 5.1.x version of CDH. You can choose any VM platform, but we recommend
VirtualBox because it is free. Once you launch the VM, you will have a GUI environment
with cloudera user, which has administrator (sudo) privilege. The account details are:

username: cloudera
password: cloudera

The virtual image comes pre-installed Hadoop and Spark. You will use them for this
assignment. Tip: You may want to setup port forwarding to obtain SSH access of guest
operating system.

Loading Data into HDFS

Now, let’s load our dataset into the HDFS (Hadoop Distributed File System), which is an
abstract file system that stores files on clusters. Your Hadoop or Spark code will directly
access files on HDFS. Paths on the HDFS look similar to those on the UNIX system, but you
can’t explore them directly using standard UNIX commands. Instead, you need to use
hadoop fs commands. For example

hadoop fs -1ls /

Download the following two graph files: graph1.tsv' (4MB) and graph2.tsv? (870MB). Use the

' This graph is originally from the Enron email network data set. There are 321 thousand edges and 77
thousand nodes
2 This graph is from the Portuguese Wikipedia link data set. There are 53 million edges and 1 million nodes.

http://www.google.com/url?q=http%3A%2F%2Fhadoop.apache.org%2F&sa=D&sntz=1&usg=AFQjCNFz3i7CkZF4afVveICKAWDNkmhNrg
https://www.google.com/url?q=https%3A%2F%2Fspark.apache.org%2F&sa=D&sntz=1&usg=AFQjCNF7-BKDJPRlPKnuQo_FS9cFTvHTIg
https://www.google.com/url?q=https%3A%2F%2Fpig.apache.org%2F&sa=D&sntz=1&usg=AFQjCNHKDW9UtwdnlmKLxXGYhLKcTKUTcg
http://www.google.com/url?q=http%3A%2F%2Fwww.honor.gatech.edu%2Fplugins%2Fcontent%2Findex.php%3Fid%3D9&sa=D&sntz=1&usg=AFQjCNEpipmQ3Pzx4Ozdhp4EprTwzj-KJA
http://www.google.com/url?q=http%3A%2F%2Fwww.cloudera.com%2Fcontent%2Fcloudera%2Fen%2Fdownloads%2Fquickstart_vms%2Fcdh-5-2-x.html&sa=D&sntz=1&usg=AFQjCNG5fhEC3sGmSp2EqW08aWcjNwxk0A
https://www.google.com/url?q=https%3A%2F%2Fwww.virtualbox.org%2F&sa=D&sntz=1&usg=AFQjCNEPuiz3WylENts_GDaCtsbf6aHtMQ
http://www.google.com/url?q=http%3A%2F%2Fpoloclub.gatech.edu%2Fcse6242%2F2014fall%2Fhw3%2Fgraph1.tsv&sa=D&sntz=1&usg=AFQjCNFV-TAiJye1jv8mNLfgFs1PlPjyzA
http://www.google.com/url?q=http%3A%2F%2Fpoloclub.gatech.edu%2Fcse6242%2F2014fall%2Fhw3%2Fgraph2.tsv&sa=D&sntz=1&usg=AFQjCNEAxCvcgd2OB3Nyk0Ejq_IzvBFU0A

following commands to setup a directory on the HDFS to store the two graph datasets. Please
do not change the directory structure below (/user/cse6242/) since we will grade your
homework using the scripts which assume the following directory structure.

sudo su hdfs

hadoop fs -mkdir /user/cse6242/

hadoop fs -chown cloudera /user/cse6242/

su cloudera

hadoop fs -put graphl.tsv /user/cse6242/graphl.tsv
hadoop fs -put graph2.tsv /user/cse6242/graph2.tsv

Now the graph1.tsv and graph2.tsv are on the HDFS at /user/cse6242/graph1i.tsv and
/user/cse6242/graph2.tsv

Setting up Development Environments

We found that compiling and running Hadoop/Scala code are quite complicated. So, we
prepared a skeleton codes, compilation scripts, and execution scripts for you. Please
download this.

The zip file has preset directory structures. As you will zip all the necessary files with the
same directory structure in the end, you may not want to modify the structure. (See the
end of this document for details). In the directories of both Task7 and Task2, you will find
pom.xml, runi.sh, run2.sh and src directory.

e src directory contains a main Java/Scala file that you will primarily work on. We
have provided some skeletal codes. Feel free to edit it and add your files in the
directory, but the main class should be Task1 and Task2 accordingly. Your code
will be evaluated using the provided run1.sh and run2.sh file (details below).

e pom.xml contains necessary dependencies and compile configurations for each
task. To compile, you can simply call Maven in the corresponding directory (Task1
or Task2 where pom.xml exists) by this command:

mvn package

It will generate a single JAR file in the target directory (i.e. target/task2-1.0.jar).
Again, we have provided you some necessary configurations to simplify your work
for this homework, but you can edit them as long as our run script works and the
code can be compiled using mvn package command.

e run1i.sh, run2.sh are the script files that run your code over graph1.tsv (runi.sh) or
graph2.tsv (run2.sh) and download the output to a local directory. The output files

http://www.google.com/url?q=http%3A%2F%2Fpoloclub.gatech.edu%2Fcse6242%2F2014fall%2Fhw3%2Fhw3-skeleton.zip&sa=D&sntz=1&usg=AFQjCNFc7BoD2xSW2bOnFFmrh6cxbwvCcw

are named based on its task number and graph number (e.g. task1outputi.tsv).
You can use these run scripts to test your code. Note that these scripts will be
used in grading. Here are what the scripts do. (You can open them in a text editor
to see what is going on.)

1) run your JAR on Hadoop/Scala specifying the input file on HDFS (the first
argument) and output directory on HDFS (the second argument)

2) merge outputs from output directory and download to local file system.

3) remove the output directory on HDFS.

[35pt] Task 1: Analyzing a Large Graph with Hadoop/Java

Please first go over the Hadoop word count tutorial to get familiar with Hadoop.

Goal

Your task is to write a MapReduce program to calculate the sum of the weights of all incoming
edges for each node in the graph.

You should have already loaded two graph files into HDFS. Each file stores a list of edges as
tab-separated-values. Each line represents a single edge consisting of three columns: (source
node ID, target node ID, edge weight), each of which is separated by a tab (\t). Node IDs are
positive integers, and weights are also positive integers. Edges are sorted in a random order.

src tgt weight
51 117 1
51 194 1
51 299 3
151 230 51
151 194 79
130 51 10

Your code should accept two arguments upon running. The first argument (args[0]) will be a path
for the input graph file on HDFS, and the second argument (args[1]) will be a path for output
directory. The default output mechanism of Hadoop will create multiple files on the output
directory such as part-00000, part-00001, which will be merged and downloaded to a local
directory by the supplied run script. Please use the run scripts for your convenience.

The format of the output should be as follows. Each line represents a node ID and the sum of its
incoming edges’ weights. The ID and the sum must be separated by a tab(\t), and lines don’t
need be sorted. The following example result is computed based on the toy graph above. Please
exclude the nodes with no incoming edges (i.e. the sum equals zero).

http://www.google.com/url?q=http%3A%2F%2Fwww.cloudera.com%2Fcontent%2Fcloudera-content%2Fcloudera-docs%2FHadoopTutorial%2FCDH4%2FHadoop-Tutorial.html&sa=D&sntz=1&usg=AFQjCNFPSnN51_IduGyFCh7bNRYeGG7kmg

51 10

117 1
194 80
230 51
299 3

Deliverables
1. [15pt] Your Maven project directory including Task1.java. Please see detailed
submission guide at the end of this document. You should implement your own
map/reduce procedure and should not import external graph processing library.
2. [5pt] task1outputi.tsv: the output file of processing graph1 by run1.sh.
3. [5pt] task1output2.tsv: the output file of processing graph2 by run2.sh.

4. [10pt] description.txt: a short description (in no more than 50 words) about your
map/reduce procedure.

[30pt] Task 2: Analyzing a Large Graph with Spark/Scala

Please go over this Spark word count tutorial.

Goal

You will implement the same task (calculating the sum of the incoming edge weights for the
nodes in the graph) using Spark with the Scala language.

Your Scala program should handle the same two arguments for input and output and should
generate the same formatted output file on the supplied output directory (tab-separated-file).
Please note that the default Spark saveastextfile method uses a different saving format from
Hadoop, so you need to format the result beforehand (Tip: use map and mkString). Again, the
result doesn’t need to be sorted.

Deliverables
1. [10pt] Your Maven project directory including Task2.scala. Please see the detailed
submission guide at the end of this document. You should implement your own
map/reduce procedure and should not import external graph processing library.

2. [5pt] task2outputi.tsv: the output file of processing graph1 by run1.sh.

3. [5pt] task2output2.tsv: the output file of processing graph2 by run2.sh.

http://www.google.com/url?q=http%3A%2F%2Fblog.cloudera.com%2Fblog%2F2014%2F04%2Fhow-to-run-a-simple-apache-spark-app-in-cdh-5%2F&sa=D&sntz=1&usg=AFQjCNEDC-llm2T5l525V8OkPReWV2lx-w

4. [10pt] description.txt: a short description (in no more than 50 words) about your
map/reduce procedure and compare your impressions of using Hadoop/Java vs.
Spark/Scala.

[35pt] Task 3: Analyzing Large Amount of Data with Pig on AWS

You will try out PIG (http://pig.apache.org) for processing n-gram data on Amazon Web Service
(AWS).

Please familiarize yourself with AWS. Read the AWS Setup Guidelines we provide to set up your
AWS account and redeem your free credit ($100)°. The services we would be primarily using for
this assignment are the Amazon S3 storage, the Amazon Elastic Cloud Computing (EC2) virtual
servers in the cloud, and the Amazon Elastic MapReduce (EMR) managed Hadoop framework.

The questions in this assignment will ideally use up only a very small fraction of your $100 credit.
AWS allows you to use up to 20 instances in total (that means 1 master instance and upto 19
core instances) without filling out a “limit request form”. For this assignment, you should not
exceed this quota of 20 instances. You can learn about these instance types by going through
the extensive AWS documentations.

You will have the access to a fraction of the Google books n-grams dataset (full dataset

is here) and you will perform some simple analysis on this dataset. An ‘n-gram’ is a phrase
with n words. This dataset gives us a list of all n-grams present in the books on
books.google.com along with some statistics.

For this assignment, you will only use the Google books bigrams (2-grams), we have provided
you with two data sets, a larger one (s3://cse6242-bigram-big) and a smaller one

(s3://lcse6242-bigram)

The files in these two S3 buckets are stored in a tab(\t) separated format. Each line in a file has
the following format:

n—-gram TAB year TAB occurrences TAB books NEWLINE
An example for 2-grams (or bigram) would be:

I am 1936 342 90
I am 1945 211 10

3 You will receive an email from TA about your AWS credit code. See an announcement on Piazza for
details.

http://www.google.com/url?q=http%3A%2F%2Fpoloclub.gatech.edu%2Fcse6242%2F2014fall%2Fhw3%2Fhw3-aws-setupguide.pdf&sa=D&sntz=1&usg=AFQjCNFIJqr2a9KShHwpU7h4DbLNKuqbiA
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

very cool 1923 500 10
very cool 1980 3210 1000
very cool 2012 9994 3020

This tells us that, in 1936, the bigram ‘| am’ appeared 342 times in 90 different books. In 1945, ‘|
am’ appeared 211 times in 10 different books. And so on.

Goal

For each unique bigram, compute its average number of appearances per book. For the above
example, the results will be the following:

I am (342 + 211) / (90 + 10) = 5.53
very cool (500 + 3210 + 9994) / (10 + 1000 + 3020) = 3.40049628

Output the 10 bigrams with the highest average number of appearances per book along with
their corresponding average sorted in descending order. If multiple bigrams have the same
average, put them in alphabetical order. For the example above, the output will be the
following (the output should be tab-separated):

I am 5.53
very cool 3.40049628

This is a fairly simple task. However, the sheer size of the data necessitates the need for large
scale computing. We want you to solve this problem by writing a PIG script on Amazon EC2 and
save the output.

You can use the interactive PIG shell provided by EMR to perform this task from the command
line (grunt). In this case, you can copy the commands you used for this task into a single file to
have the PIG script and the output from the command line into a separate file. Please see this for
how to use PIG shell. Also, you can upload the script and create a task on your cluster.

To load the data from the s3://cse6242-bigram bucket into a PIG table, you can use the following
command:

grunt> bigrams = LOAD 's3://cse6242-bigram/*' AS (bigram:chararray, year:int, count:int,
books:int);
(HINT: You might want to change the data type for year, count or books)

While working with the interactive shell (or otherwise), you should first test on a small subset of
the data instead of the whole data (the whole data is over hundreds of GB). Once you believe
your PIG commands are working as desired, you can use them on the complete data and
...wait... since it will take some time.

http://www.google.com/url?q=http%3A%2F%2Fdocs.aws.amazon.com%2FElasticMapReduce%2Flatest%2FDeveloperGuide%2Femr-pig.html&sa=D&sntz=1&usg=AFQjCNEzbE0w09WkB-6lmYFXuXtE0jwjrg

Deliverables:

e pig.txt: The PIG script for the task (using the larger data set).
e output-small.txt: Output (tab-separated) for the smaller data set.
e output-big.txt: Output (tab-separated) for the larger data set.

Submission Guideline

Submit the deliverables as a single zip file named hw3-Lastname-Firstname.zip (should
start with lowercase hw3). Please specify the name(s) of any students you have
collaborated with on this assignment, using the text box on the T-Square submission

page.

The directory structure of the zip file should be exactly as below (the unzipped file should
look like this):

hw3-Smith-John/ (this should reflect your name, not skeleton)
Taskl/
src/main/java/edu/gatech/cse6242/Taskl.java
description.txt
pom.xml
run.sh
taskloutputl.tsv
taskloutput2.tsv
(do not attach target directory)

Task2/
src/main/scala/edu/gatech/cse6242/Task2.scala
description.txt
pom.xml
run.sh
task2outputl.tsv
task2output2.tsv
(do not attach target directory)

Task3/
pig.txt
output-small.txt
output-big.txt

Please stick to the naming convention specified above.

