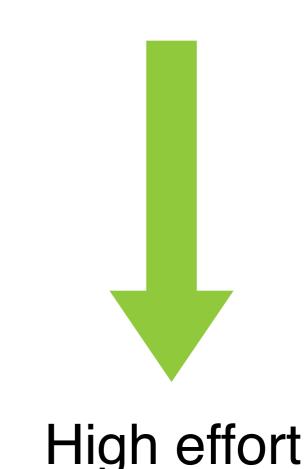

Data Collection, Simple Storage (SQLite) & Cleaning Duen Horng (Polo) Chau Georgia Tech

CSE 6242 A / CS 4803 DVA Jan 15, 2013

Partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos

Last time: Big data analytics process & building blocks



Today:

Data Collection, Simple Storage (SQLite) & Cleaning

How to get data?

- Download (where?)
- API
- Scrape/Crawl, or from equipment (e.g., sensors)

Low effort

Data you can just download

Yahoo Finance (csv)

StackOverflow (xml)

Yahoo Music (KDD cup)

Atlanta crime data (csv)

Soccer statistics

Data via API

CrunchBase (database about companies) - JSON

Twitter

- Last.fm (Pandora has API?)
- Flickr

Facebook

Rotten Tomatoes

iTunes

Data that needs scraping

Amazon (reviews, product info)

- ESPN
- Google Scholar
- (eBay?)

Most popular embedded database in the world

• iPhone (iOS), Android, Chrome (browsers), Mac, etc.

Self-contained: one file contains data + schema Serverless: database right on your computer Zero-configuration: no need to set up!

> <u>http://www.sqlite.org</u> <u>http://www.sqlite.org/different.html</u>

7

>sqlite3 database.db

sqlite> create table student(ssn integer, name text);
sqlite> .schema

CREATE TABLE student(ssn integer, name text);

ssn	name

- insert into student values(111, "Smith");
- insert into student values(222, "Johnson");
- insert into student values(333, "Obama");
- select * from student;

ssn	name
111	Smith
222	Johnson
333	Obama

create table takes

(ssn integer, course_id integer, grade integer);

ssn	course_id	grade

More than one tables - **joins** E.g., create roster for this course

ssn	name	ssn	course_id	grade
111	Smith	111	6242	100
222	Johnson	222	6242	90
333	Obama	222	4000	80

select name from student, takes
where student.ssn = takes.ssn and
takes.course_id = 6242;

ssn	name	ssn	course_id	grade
111	Smith	111	6242	100
222	Johnson	222	6242	90
333	Obama	222	4000	80

SQL General Form

select a1, a2, ... an
from t1, t2, ... tm
where predicate
[order by ...]
[group by ...]
[having ...]

Find ssn and GPA for each student

select ssn, avg(grade)
from takes
group by ssn;

ssn	course_id	grade
111	6242	100
222	6242	90
222	4000	80

ssn	avg(grade)
111	100
222	85

What if slow?

Build an **index** to speed things up. SQLite implements **B-tree**. Speed improves from O(N) if to do a sequential scan to O(logN).

create index student_ssn_index
on student(ssn);

Homework 1

Write a simple script/program to import Rotten Tomatoes data into SQLite, and do some simple queries.

http://developer.rottentomatoes.com/docs/read/json/v10/Movie_Info

How dirty is real data?

Data Cleaners

Watch videos

Google Refine

Data Wrangler (research at Stanford)

in <mark>Alabam</mark>	Alabama
in <mark>Alaska</mark>	Alaska
in <mark>Arizon</mark>	Arizona
in <mark>Arkans</mark>	Arkansas

Write down

- Examples of data dirtiness
- Tool's features demo-ed (or that you like)

Will collectively summarize similarities and differences afterwards

Google Refine:http://code.google.com/p/google-refine/Data Wrangler:http://vis.stanford.edu/wrangler/18

How dirty is real data?

Examples

- typos (missing "s")
- inconsistency (structure)
- differences in units (billions vs thousands)
- missing values
- different values for the same thing (e.g., abbreviations)
- whole data file not in tabular format
- mixed value format (nominal vs numeric)
- different encodings
- negative values (e.g., -1 => non-sense)
- outlier in general
- different "language" (utf-8 vs ascii)
- id sometimes means a person, or household (e.g., in banking)

How do they compare?

Similarities

- work directly on data
- provide visual feedback
- browser-based
- can only hangle common use cases(?)
- free!!!
- undo/redo, history (people make mistakes)
- input: plain text

G = Google Refine $W = Data wrangler_{20}$

How do they compare?

Differences

- W generates transform code
- G recognizes clusters
- W gives natural language suggestions
- G works offline (your sensitive data stay with you)
- G has more sophisticated functions?
- W seems to be able to transform overall data format
- W supports expression syntax (e.g., log())
- G more scalable(?)

G = Google Refine $W = Data wrangler_{21}$

The videos only show some of the tools' features. Try them out.

Google Refine: <u>http://code.google.com/p/google-refine/</u> Data Wrangler: <u>http://vis.stanford.edu/wrangler/</u>

Piazza

Saw some questions and answers already. Good!

- Any questions are fair game
- Questions about lectures, homework, project, tools, libraries, etc.

Has features that help form teams (for project)